
 Turing Machines and Effective
Computability

Turing machines

 the most powerful automata (> FAs and PDAs)
 invented by Turing in 1936
 can compute any function normally considered

computable
 Turing-Church Theses:

◦ Anything (function, problem, set etc.) that is (though to be)
computable is computable by a Turing machine (i.e., Turing-
computable).

 Other equivalent formalisms:
◦ post systems (string rewriting system)
◦ PSG (phrase structure grammars) : on strings
◦ m-recursive function : on numbers
◦ l-calculus, combinatory logic: on l-term
◦ C, BASIC, PASCAL, JAVA languages,… : on strings

Informal description of a Turing
machine

1. Finite automata (DFAs, NFAs, etc.):
◦ limited input tape: one-way, read-only
◦ no working-memory
◦ finite-control store (program)

2. PDAs:
◦ limited input tape: one-way, read-only
◦ one additional stack as working memory
◦ finite-control store (program)

3. Turing machines (TMs):
◦ a semi-infinite tape storing input and supplying
additional working storage.

◦ finite control store (program)
◦ can read/write and two-way(move left and right)
depending on the program state and input symbol
scanned.

Turing machines and LBAs

4. Linear-bounded automata (LBA): special TMs
◦ the input tape is of the same size as the input length

 (i.e., no additional memory supplied except those used to store
the input)

◦ can read/write and move left/right depending on the program
state and input symbol scanned.

 Primitive instructions of a TM (like +,-,*, etc in C or
BASIC):
1. L, R // moving the tape head left or right

2. a G, // write the symbol a G on the current
 scanned position

depending on the precondition:

 1. current state and

 2. current scanned symbol of the tape head

left-end

 x1 x2 x3 x4 x5 .. xn

input: x

….

additional working memory

.

.

.

.

accept final state

reject final state

current state

initial state

control store (program)

r/w & movable tape head

memory is a one-dimensional tape

permitted actions:

1. write

2. move left/right

depending on scanned symbol

and current state

The model of a Turing machine

no right-end for TM

The structure of a TM instruction:

 An instruction of a TM is a tuple:

 (q, a, p, d) Q x G x Q x (G U {L,R})

 where
◦ q is the current state

◦ a is the symbol scanned by the tape head
◦ (q,a) define a precondition that the machine may encounter

◦ (p,d) specify the actions to be done by the TM once the machine is in a
condition matching the precondition (i.e., the symbol scanned by the tape
head is ‘a’ and the machine is at state q)

◦ p is the next state that the TM will enter

◦ d is the action to be performed:

 d = b G means “write the symbol b to the tape cell currently
scanned by the tape head”.

 d = R (or L) means “move the tape head one tape cell in the
right (or left, respectively) direction.

 A Deterministic TM program d is simply a set of TM instructions (or
more formally a function: d: Q x G --> Qx (G U{L,R}))

Formal Definition of a standard TM
(STM)

 A deterministic 1-tape Turing machine (STM) is a 9-
tuple

 M = (Q,S,G, [, , d, s, t,r) where
◦ Q : is a finite set of (program) states with a role like labels
in traditional programs

◦ G : tape alphabet
◦ S G : input alphabet
◦ [G - S : The left end-of-tape mark
◦ G - S is the blank tape symbol
◦ s Q : initial state
◦ t Q : the accept state
◦ r t Q: the reject state and
◦ d: (Q - {t,r})x G --> Qx(G U {L,R}) is a total transition
function with the restriction: if d(p, [) =(q, d) then d = R.
i.e., the STM cannot write any symbol at left-end and
never move off the tape to the left.

Configurations and acceptances

 Issue: h/w to define configurations like those
defined at FAs and PDAs ?

 At any time t0 the TM M’s tape contains a semi-
infinite string of the form

 Tape(t0) = [y1y2…ym ….. (ym)

 Let w denotes the semi-infinite string:

 …..
Note: Although the tape is an infinite string, it has a

finite canonical representation: y, where y = [y1…ym
(with ym)

A configuration of the TM M is a global state giving a
snapshot of all relevant info about M’s computation
at some instance in time.

Formal definition of a configuration

Def: a cfg of a STM M is an element of
 CFM =def Q x { [y | y (G-{[})*} x N // N =

{0,1,2,…} //
When the machine M is at cfg (p, z, n) , it means M is
 1. at state p
 2. Tape head is pointing to position n and
 3. the input tape content is z.
Obviously cfg gives us sufficient information to continue the

execution of the machine.
Def: 1. [Initial configuration:] Given an input x and a STM M,
 the initial configuration of M on input x is the triple:
 (s, [x, 0)
2. If cfg1 = (p, y, n), then cfg1 is an accept configuration if p =

t (the accept configuration), and cfg1 is an reject cfg if p = r
(the reject cfg). cfg1 is a halting cfg if it is an accept or
reject cfg.

One-step and multi-step TM computations

 one-step Turing computation (|--M) is defined as follows:
 |--M CFM

2 s.t.
 0. (p,z,n) |--M (q,sn

b(z), n) if d(p,zn) = (q, b) where
b G

 1. (p,z,n) |--M (q,z, n-1) if d(p,zn) = (q, L)
 2. (p,z,n) |--M (q,z, n+1) if d(p,zn) = (q, R)

◦ where sn
b(z) is the resulting string with the n-th symbol of z replaced

by ‘b’.
◦ ex: s4

b([baaacabc) = [baabcabc

◦ s6
b([baa) = [baab

 |--M is defined to be the set of all pairs of configurations
each satisfying one of the above three rules.

Notes: 1. if C=(p,z,n) |--M (q,y,m) then n 0 and m 0
(why?)

 2. |--M is a function [from nonhalting cfgs to cfgs] (i.e., if C
|--M D & C |--M E then D=E).

 3. define |--n
M and |--*M (ref. and tran. closure of |--M) as

usual.

Accepting and rejecting of TM on inputs

 x S is said to be accepted by a STM M if

 icfgM(x) =def (s, [x, 0) |--*M (t,y,n) for some
y and n
◦ I.e, there is a finite computation

 (s, [x, 0) = C0 |--M C1 |-- M …. |--M Ck = (t,y,n)

starting from the initial configuration and ending at an accept
configuration.

 x is said to be rejected by a STM M if

 (s, [x, 0) |--*M (r,y,n) for some y
and n
◦ I.e, there is a finite computation

◦ (s, [x, 0) = C0 |--M C1 |-- M …. |--M Ck = (t,y,n)

◦ starting from the initial configuration and ending at a reject
configuration.

 Notes: 1. It is impossible that x is both accepted and rejected by a
STM. (why ?)

 2. It is possible that x is neither accepted nor rejected. (why ?)

Languages accepted by a STM

Def:

 1. M is said to halt on input x if either M accepts x or
rejects x.

 2. M is said to loop on x if it does not halt on x.

 3. A TM is said to be total if it halts on all inputs.

 4. The language accepted by a TM M,

 L(M) =def {x in S* | x is accepted by M, i.e., (s, [xw ,0)
|--*M (t, -,-) }

 5. If L = L(M) for some STM M

 ==> L is said to be recursively enumerable (r.e.)

 6. If L = L(M) for some total STM M

 ==> L is said to be recursive

 7. If ~ L=def S* - L = L(M) for some STM M (or total STM
M)

 ==> L is said to be Co-r.e. (or Co-recursive, respectively)

Some examples

Ex1: Find a STM to accept L1 = { w # w | w
{a,b}* }

 note: L1 is not CFL.
 The STM has tape alphabet G = {a, b,#, -, , [} and behaves as

follows: on input z = w # w {a,b,#}*
 1. if z is not of the form {a,b}* # {a,b}* => goto reject

 2. move left until ‘[‘ is encountered and in that case move right
 3. while I/P = ‘-’ move right;
 4. if I/P = ‘a’ then

 4.1 write ‘-’; move right until # is encountered; Move right;
 4.2 while I/P = ‘-’ move right
 4.3 case (I/P) of { ‘a’ : (write ‘-’; goto 2); o/w: goto reject }

 5. if I/p = ‘b’ then … // like 4.1~ 4.3

 6. If I/P = ‘#’ then // All symbols left to # have been compared

 6.1 move right

 6.2 while I/P = ‘-” move right
 6.3 case (I/P) of {‘’ : goto Accept; o/w: go to Reject }

More detail of the STM

Step 1 can be accomplished as follows:

 1.1 while (~# /\ ~) R; // or equivalently, while
(a \/ b\/[) R

 if => reject // no # found on the input

 if # => R;

 1.2 While (~# /\ ~) R;

 if => goto accept [or goto 2 if regarded as a
subroutine]

 if # => goto Reject; // more than one #s
found

Step 1 requires only two states:

Graphical representation of a TM

R
~# /\ ~

R

t r

R
~# /\ ~

R
 #

s

u

ACs
cnd

p q
means:

 if (state = p) /\ (cnd true for i/p)

 then 1. perform ACs and 2. go to q

ACs can be primitive ones: R, L, a,…

or another subroutine TM M1.

Ex: the arc from s to s implies the

 existence of 4 instructions:

 (s, a, s, R), (s,b,s,R), (s, [,s,R),

 and (s,-, s,R)

Tabular form of a STM

 Translation of the graphical form to tabular
form of a STM
 [a b # -

>s s,R s,R s,R u,R x r,x

u x u,R u,R r,x x t,

tF halt halt halt halt halt halt

rF halt halt halt halt halt halt

X means don’t care

The rows for t & r indeed need not be listed!!

G

Q

d

The complete STM accepting L1

R
~# /\ ~

R

r

R
~# /\ ~

R
 #

L ~[

[
R R R

R

R

R

R - ~# -

a

-
~a r

r

t

~#

b

-

~ /\~-

b

x

a #

r ~b
step 1.

step 2. step 3. step 4.

step 5.

step 6.

-

-

-

-

R.e. and recursive languages
Recall the following definitions:
 1. M is said to halt on input x if either M accepts x or

rejects x.
 2. M is said to loop on x if it does not halt on x.
 3. A TM is said to be total if it halts on all inputs.
 4. The language accepted by a TM M,

 L(M) =def {x ∈S* | x is accepted by M, i.e., (s, [x w ,0)
|--*M (t, -,-) }

 5. If L = L(M) for some STM M
 ==> L is said to be recursively enumerable (r.e.)
 6. If L = L(M) for some total STM M
 ==> L is said to be recursive
 7. If ~ L=def S* - L = L(M) for some STM M (or total STM

M)
 ==> L is said to be Co-r.e. (or Co-recursive,

respectively)

Recursive languages are closed under
complement
Theorem 1: Recursive languages are closed under complement.

(i.e., If L is recursive, then ~L = S* - L is recursive.)

pf: Suppose L is recursive. Then L = L(M) for some total TM M.
 Now let M* be the machine M with accept and reject states

switched.
 Now for any input x,

◦ x ~L => x L(M) => icfgM(x) |-M* (t,-,-) =>

◦ icfgM*(x) |-M** (r*,-,-) => x L(M*).

◦ x ~L => x L(M) => icfgM(x) |-M* (r,-,-) =>

◦ icfgM*(x) |-M** (t*,-,-) => x L(M*).

Hence ~L = L(M*) and is recursive.
Note.The same argument cannot be applied to r.e. languages.

 (why?)
Exercise: Are recursive sets closed under union, intersection,

concatenation and/or Kleene’s operation ?

Some more terminology

 Set : Recursive and recursively enumerable(r.e.)

predicate: Decidability and semidecidability

 Problem: Solvability and semisolvabilty

 P : a statement about strings (or a property of strings)

 A: a set of strings

 Q : a (decision) Problem.

We say that

1. P is decidable <==> { x | P(x) is true } is recursive

2. A is recursive <==> “x A” is decidable.
3. P is semidecidable <==> { x | P(x) is true } is r.e.

4. A is r.e. <==> “x A” is semidecidable.
5. Q is solvable <=> Rep(Q) =def {“P” | P is a positive instance

of Q } is recursive.

6. Q is semisolvale <==> Rep(Q) is r.e..

