Turing Machines and Effective Computability

Turing machines

- the most powerful automata (> FAs and PDAs)
- invented by Turing in 1936
- can compute any function normally considered computable
- Turing-Church Theses:
 - Anything (function, problem, set etc.) that is (though to be) computable is computable by a Turing machine (i.e., Turingcomputable).
- Other equivalent formalisms:
 - post systems (string rewriting system)
 - PSG (phrase structure grammars) : on strings
 - \circ µ-recursive function : on numbers
 - λ -calculus, combinatory logic: on λ -term
 - C, BASIC, PASCAL, JAVA languages,... : on strings

Informal description of a Turing machine

- 1. Finite automata (DFAs, NFAs, etc.):
 - limited input tape: one-way, read-only
 - no working-memory
 - finite-control store (program)
- 2. PDAs:
 - limited input tape: one-way, read-only
 - one additional stack as working memory
 - finite-control store (program)
- 3. Turing machines (TMs):
 - a semi-infinite tape storing input and supplying additional working storage.
 - finite control store (program)
 - can read/write and two-way(move left and right) depending on the program state and input symbol scanned.

Turing machines and LBAs

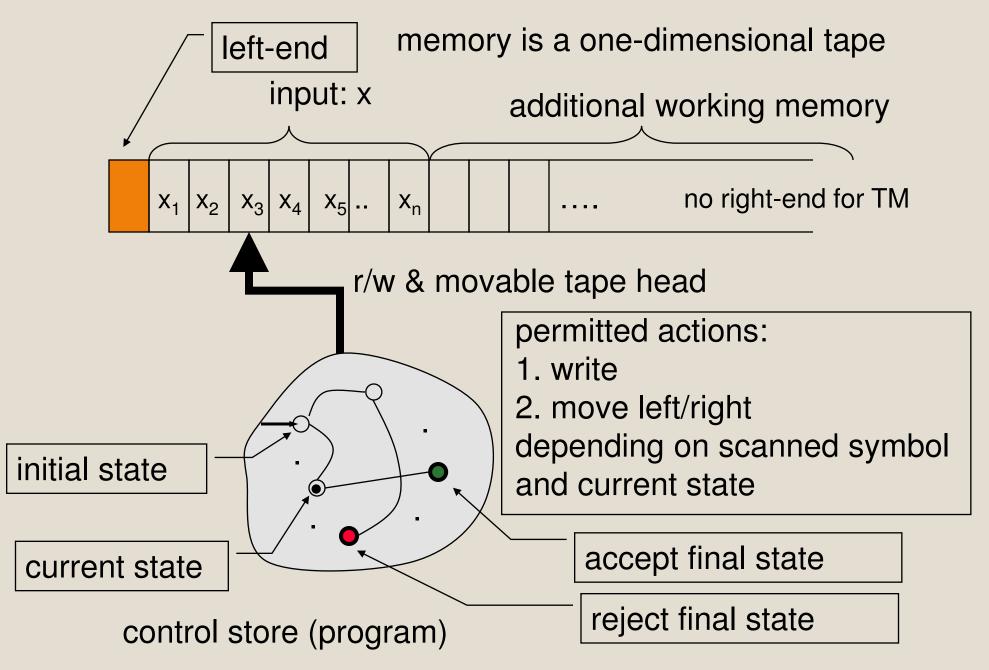
4. Linear-bounded automata (LBA): special TMs

- the input tape is of the same size as the input length (i.e., no additional memory supplied except those used to store the input)
- can read/write and move left/right depending on the program state and input symbol scanned.
- Primitive instructions of a TM (like +,-,*, etc in C or BASIC):
 - 1. L, R // moving the tape head left or right
 - 2. $a \in \Gamma$, // write the symbol $a \in \Gamma$ on the current scanned position

depending on the precondition:

- 1. current state and
- 2. current scanned symbol of the tape head

The model of a Turing machine



The structure of a TM instruction:

• An instruction of a TM is a tuple:

$(q, a, p, d) \in Q \times \Gamma \times Q \times (\Gamma \cup \{L,R\})$ where

- q is the current state
- a is the symbol scanned by the tape head
- (q,a) define a precondition that the machine may encounter
- (p,d) specify the actions to be done by the TM once the machine is in a condition matching the precondition (i.e., the symbol scanned by the tape head is `a' and the machine is at state q)
- p is the next state that the TM will enter
- d is the action to be performed:
 - $d = b \in \Gamma$ means "write the symbol b to the tape cell currently scanned by the tape head".
 - d = R (or L) means "move the tape head one tape cell in the right (or left, respectively) direction.
- A Deterministic TM program δ is simply a set of TM instructions (or more formally a function: δ: Q x Γ --> Qx (Γ U{L,R}))

Formal Definition of a standard TM (STM)

 A deterministic 1-tape Turing machine (STM) is a 9tuple

 $M = (Q, \Sigma, \Gamma, [, \Box, \delta, s, t, r)$ where Q : is a finite set of (program) states with a role like labels in traditional programs • Γ : tape alphabet • $\Sigma \subset \Gamma$: input alphabet • $[\in \Gamma - \Sigma : The left end-of-tape mark]$ • $\Box \in \Gamma - \Sigma$ is the blank tape symbol • $s \in Q$: initial state • $t \in Q$: the accept state • $r \neq t \in Q$: the reject state and • δ : (Q - {t,r})x Γ --> Qx(Γ U {L,R}) is a *total* transition function with the restriction: if $\delta(p, [) = (q, d)$ then d = R. i.e., the STM cannot write any symbol at left-end and never move off the tape to the left.

Configurations and acceptances

- Issue: h/w to define configurations like those defined at FAs and PDAs ?
- At any time t₀ the TM M's tape contains a semiinfinite string of the form

 $Tape(t_0) = [y_1y_2...y_m \square \square \square \square (y_m \neq \square)$

• Let \square $^{\circ\circ}$ denotes the semi-infinite string:

Note: Although the tape is an infinite string, it has a finite canonical representation: y, where $y = [y_1...y_m (with y_m \neq \Box)$

A configuration of the TM M is a global state giving a snapshot of all relevant info about M's computation

Formal definition of a configuration

Def: a cfg of a STM M is an element of

 $CF_{M} =_{def} Q \times \{ [y | y \in (\Gamma - \{[\})^{*}\} \times N // N = \{0,1,2,...\} //$

When the machine M is at cfg (p, z, n), it means M is

1. at state p

2. Tape head is pointing to position n and

3. the input tape content is z.

Obviously cfg gives us sufficient information to continue the execution of the machine.

Def: 1. [Initial configuration:] Given an input x and a STM M, the initial configuration of M on input x is the triple:

(s, [x, 0)

2. If cfg1 = (p, y, n), then cfg1 is an accept configuration if p = t (the accept configuration), and cfg1 is an reject cfg if p = r (the reject cfg). cfg1 is a halting cfg if it is an accept or reject cfg.

One-step and multi-step TM computations

- one-step Turing computation ($|--_{M}$) is defined as follows:
- $|--_M \subseteq CF_M^2$ s.t. 0. $(p,z,n) |--_M (q,s^n_b(z), n)$ if $\delta(p,z_n) = (q, b)$ where $b \in \Gamma$
 - 1. $(p,z,n) \mid --_{M} (q,z, n-1)$ if $\delta(p,z_{n}) = (q, L)$ 2. $(p,z,n) \mid --_{M} (q,z, n+1)$ if $\delta(p,z_{n}) = (q, R)$
 - where sⁿ_b(z) is the resulting string with the n-th symbol of z replaced by `b'.
 - ex: s_b^4 ([baa<u>a</u>cabc]) = [baa<u>b</u>cabc]
 - s_b^6 ([baa]) = [baa] b
- $|--_{M}$ is defined to be the set of all pairs of configurations each satisfying one of the above three rules.
- Notes: 1. if C=(p,z,n) $|--_{M} (q,y,m)$ then $n \ge 0$ and $m \ge 0$ (why?)
 - 2. $|--_{M}$ is a function [from nonhalting cfgs to cfgs] (i.e., if C $|--_{M} D \& C |--_{M} E$ then D=E).
 - 3. define $|--^{n}_{M}$ and $|--*_{M}$ (ref. and tran. closure of $|--_{M}$) as

Accepting and rejecting of TM on inputs

• $x \in \Sigma$ is said to be accepted by a STM M if

 $icfg_M(x) =_{def} (s, [x, 0) | --*_M (t,y,n)$ for some y and n

• I.e, there is a finite computation

 $(s, [x, 0) = C_0 | --_M C_1 | --_M C_k = (t,y,n)$ starting from the initial configuration and ending at an accept configuration.

x is said to be rejected by a STM M if
 (s, [x, 0) |--*_M (r,y,n) for some y

and n

0

I.e, there is a finite computation

 $(s, [x, 0) = C_0 | --_M C_1 | --_M | --_M C_k = (t, y, n)$

- starting from the initial configuration and ending at a reject configuration.
- Notes: 1. It is impossible that x is both accepted and rejected by a STM. (why ?)

Languages accepted by a STM

Def:

1. M is said to *halt* on input x if either M accepts x or rejects x.

- 2. M is said to *loop* on x if it does not halt on x.
- 3. A TM is said to be *total* if it halts on all inputs.
- 4. The language accepted by a TM M,

L(M) =_{def} {x in Σ^* | x is accepted by M, i.e., (s, [x□^ω, 0) |--*_M (t, -,-) }

5. If L = L(M) for some STM M

==> L is said to be *recursively enumerable (r.e.)*

6. If L = L(M) for some total STM M

==> L is said to be *recursive*

7. If ~ L=_{def} Σ^* - L = L(M) for some STM M (or total STM M)

==> L is said to be *Co-r.e. (or Co-recursive, respectively)*

Some examples

Ex1: Find a STM to accept $L_1 = \{ w \# w \mid w \in \{a,b\}^* \}$

note: L_1 is not CFL.

The STM has tape alphabet $\Gamma = \{a, b, \#, -, \Box, [\} \text{ and behaves as follows: on input } z = w \# w \in \{a, b, \#\}^*$

- 1. if z is not of the form $\{a,b\}^* \# \{a,b\}^* =>$ goto reject
- 2. move left until `[` is encountered and in that case move right 3. while I/P = -' move right;

4. if I/P = a' then

- 4.1 write `-'; move right until # is encountered; Move right;
- 4.2 while I/P = '-' move right
- 4.3 case (I/P) of { `a' : (write `-'; goto 2); o/w: goto reject
- 5. if I/p = `b' then ... // like 4.1~ 4.3
- 6. If I/P = `#' then // All symbols left to # have been compared 6.1 move right
 - 6.2 while I/P = '-'' move right

More detail of the STM

Step 1 can be accomplished as follows:

1.1 while (~# /\ ~ \Box) R; // or equivalently, while (a \/ b\/[) R

if = > reject // no # found on the input
if # => R;

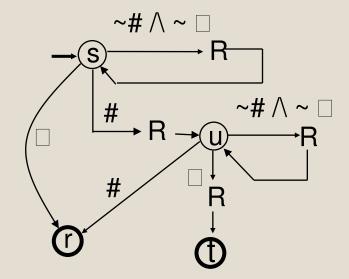
1.2 While ($\sim \# / \setminus \sim \Box$) R;

if $\Box =>$ goto accept [or goto 2 if regarded as a subroutine]

if # => goto Reject; // more than one #s
found

Step 1 requires only two states:

Graphical representation of a TM



cnd ACs means: if (state = p) \land (cnd true for i/p) then 1. perform ACs and 2. go to q ACs can be primitive ones: R, L, a,... or another subroutine TM M₁. Ex: the arc from s to s implies the existence of 4 instructions:

(s, a, s, R), (s,b,s,R), (s, [,s,R), and (s,-, s,R)

Tabular form of a STM

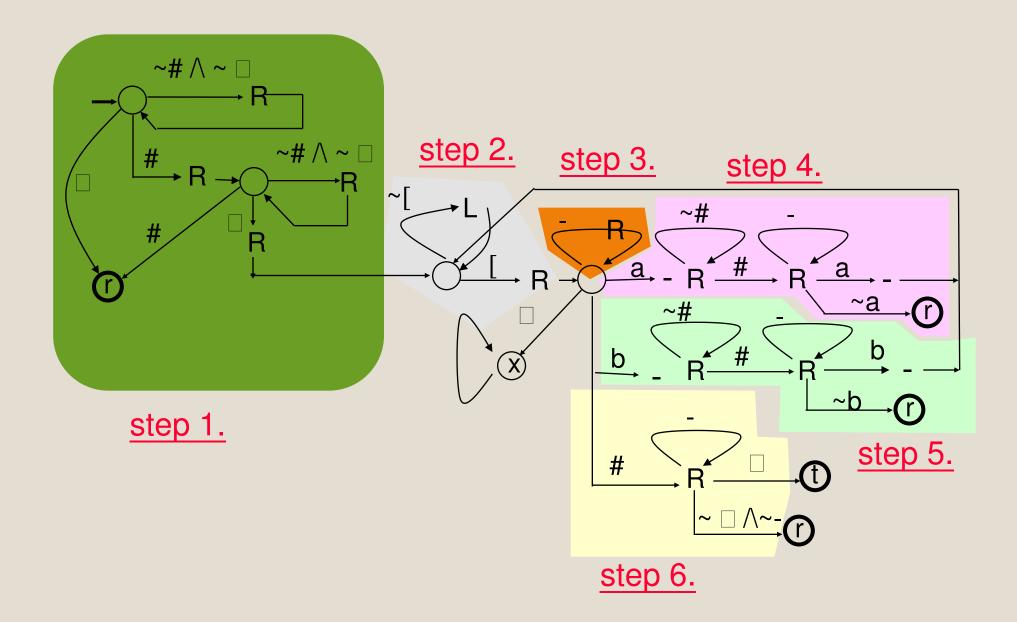
 Translation of the graphical form to tabular form of a STM

Ć		[а	b	#	-	
•	>S	s,R	s,R	s,R	u,R	X	r,x
	u	X	u,R	u,R	r,x	X	t , 🗆
	tF	halt	halt	halt	halt	halt	halt
	rF	halt	halt	halt	halt	halt	halt

X means don't care

The rows for t & r indeed need not be listed!!

The complete STM accepting L₁



R.e. and recursive languages

Recall the following definitions:

- 1. M is said to *halt* on input x if either M accepts x or rejects x.
- 2. M is said to *loop* on x if it does not halt on x.
- 3. A TM is said to be *total* if it halts on all inputs.
- 4. The language accepted by a TM M,

L(M) =_{def} {x ∈Σ* | x is accepted by M, i.e., (s, [x □ $^{\omega}$,0) |--*_M (t, -,-) }

5. If L = L(M) for some STM M

==> L is said to be *recursively enumerable (r.e.)*

6. If L = L(M) for some total STM M

==> L is said to be *recursive*

7. If ~ $L=_{def} \Sigma^* - L = L(M)$ for some STM M (or total STM M)

==> L is said to be *Co-r.e. (or Co-recursive, respectively*)

Recursive languages are closed under complement

- Theorem 1: Recursive languages are closed under complement (i.e., If L is recursive, then $\sim L = \Sigma^* L$ is recursive.)
- pf: Suppose L is recursive. Then L = L(M) for some total TM M. Now let M* be the machine M with accept and reject states switched.

Now for any input x,

• $x \notin \sim L => x \in L(M) => icfg_M(x) |_{-M}^* (t,-,-) =>$ • $icfg_{M^*}(x) |_{-M^*}^* (r^*,-,-) => x \notin L(M^*).$ • $x \in \sim L => x \notin L(M) => icfg_M(x) |_{-M}^* (r,-,-) =>$ • $icfg_{M^*}(x) |_{-M^*}^* (t^*,-,-) => x \in L(M^*).$

Hence $\sim L = L(M^*)$ and is recursive.

Note. The same argument cannot be applied to r.e. languages. (why?)

Exercise: Are recursive sets closed under union, intersection, concatenation and/or Kleene's operation ?

Some more terminology

Set : Recursive and recursively enumerable(r.e.) predicate: Decidability and semidecidability Problem: Solvability and semisolvabilty

- P : a statement about strings (or a property of strings)
- A: a set of strings
- Q : a (decision) Problem.

We say that

- 1. P is decidable $\langle = = \rangle \{ x \mid P(x) \text{ is true } \}$ is recursive
- 2. A is recursive $\langle = = \rangle$ "x $\in A''$ is decidable.
- 3. P is semidecidable $\langle = = \rangle \{ x \mid P(x) \text{ is true } \}$ is r.e.
- 4. A is r.e. $\langle = = \rangle$ "x \in A" is semidecidable.
- 5. Q is solvable <=> Rep(Q) =_{def} {"P" | P is a positive instance of Q } is recursive.
- 6. Q is semisolvale <==> Rep(Q) is r.e..